Limiting distribution of eigenvalues in the large sieve matrix
نویسندگان
چکیده
منابع مشابه
Eigenvalues in the large sieve inequality, II
L’accès aux articles de la revue « Journal de Théorie des Nombres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction...
متن کاملNo eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix
We consider a class of matrices of the form Cn = (1/N)A 1/2 n XnBnX ∗ nA 1/2 n , where Xn is an n × N matrix consisting of i.i.d. standardized complex entries, A n is a non-negative definite Hermitian square-root of the non-negative definite matrix An, and Bn is diagonal with nonnegative diagonal entries. Under the assumption that the distribution of the eigenvalues of An and Bn converge to pro...
متن کاملNo Eigenvalues Outside the Support of Limiting Empirical Spectral Distribution of a Separable Covariance Matrix
We consider a class of matrices of the form Cn = (1/N)A 1/2 n XnBnX ∗ nA 1/2 n , where Xn is an n × N matrix consisting of i.i.d. standardized complex entries, A n is a non-negative definite Hermitian square-root of the non-negative definite matrix An, and Bn is diagonal with nonnegative diagonal entries. Under the assumption that the distribution of the eigenvalues of An and Bn converge to pro...
متن کاملNo Eigenvalues Outside the Support of the Limiting Spectral Distribution of Large Dimensional Sample Covariance Matrices
Let Bn = (1/N)T 1/2 n XnX ∗ nT 1/2 n where Xn is n ×N with i.i.d. complex standardized entries having finite fourth moment, and T 1/2 n is a Hermitian square root of the nonnegative definite Hermitian matrix Tn. It is known that, as n→∞, if n/N converges to a positive number, and the empirical distribution of the eigenvalues of Tn converges to a proper probability distribution, then the empiric...
متن کاملConvergence of Eigenvalues to the Support of the Limiting Measure in Critical Β Matrix Models
We consider the convergence of the eigenvalues to the support of the equilibrium measure in the β ensemble model under a critical condition. We show a phase transition phenomenon, namely that all eigenvalues will fall in the support of the limiting spectral measure when β > 1, whereas this always fails when β < 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2020
ISSN: 1435-9855
DOI: 10.4171/jems/965